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Introduction



  

Motivation for studying K ππ Decays→

● Direct CPV first observed in late 90s at CERN and Fermilab in K0 ππ:→

measure of indirect CPVmeasure of direct CPV

● In terms of isospin states: ΔI=3/2 decay to I=2 final state, amplitude A2 
ΔI=1/2 decay to I=0 final state, amplitude A0 

     (δI are strong scattering phase shifts.)

(experiment)

● Small size of ε' makes it particularly sensitive to new direct-CPV 
introduced by most BSM models.



  

Overview of calculation

perturbative Wilson coeffs.

Imaginary part solely responsible for CPV 
(everything else is pure-real)

10 effective four-quark operators

● Low-energy QCD interactions play an important role in kaon decays.
● Lattice QCD only ab initio, systematically improvable technique.

● At energy scales μ«MW, K ππ decays use weak EFT:→

● Operators must be renormalized into same scheme as Wilson coeffs: Use RI-
(S)MOM NPR and perturbatively match to MSbar at high scale.

renormalization 
matrix (mixing)LL finite-volume correction

(lattice)



  

Lattice Determination of A2

● Separate lattice calculations for A2 and A0.

● RBC & UKQCD have been computing A2 for a number of years. 

● Most recently with 2+1f physical quark masses, physical kinematics 
and in the continuum limit.

● ~3% statistical error!

● 15% sys. error completely dominated by perturbative truncation of RI-
SMOM  MSbar matching.→

● Can be addressed straightforwardly by step-scaling to a higher μ or 
computing higher-order PT contributions.

● Lattice calculation of A0 considerably more challenging – topic for most 
of remainder of this talk.

[Phys.Rev. D91 (2015) 7, 074502]



  

 Determination of A0

arXiv:1505.07863 [hep-lat]



  

Matrix element calculation

● 4 classes of diagram:

● Type 4 disconn. diagrams dominate noise. 
● Use Trinity-style all-to-all (A2A) propagators:

 

● Allows us to perform all spatial and temporal translations to boost 
statistics.

● 900 exact low-eigenmodes computed using Lanczos algorithm
● Stochastic high-modes with full dilution of indices

● A0 obtained via neutral kaon decays                         and  

disconnected



  

Physical Kinematics

● Second approach optimal but technically challenging: must conserve 
isospin and apply momentum to both charged and neutral pions.

● Solution: Use G-parity BCs:

                   
● As a boundary condition: (i=+, -, 0)

(moving ground state)

● Important to calculate with physical (energy-conserving) kinematics. 
● With physical masses:
● Requires moving pions!
● This is excited state of the ππ-system. Possibilities: 

● try to perform multi-state fits to very noisy data                               
(esp. A0 where there are disconn. diagrams)  

● modify boundary conditions to remove the ground-state



  

Ensemble and state energies

● 323x64 Mobius DWF ensemble with IDSDR gauge action at β=1.75. Coarse 
lattice spacing (a-1=1.378(7) GeV) but large,  (4.6 fm)3 box.

● G-parity BCs in 3 directions.

● Performed 216 independent measurements (4 MDTU sep.).

● Utilized:

mK=490.6(2.4) MeV

Eππ(I=0) = 498(11) MeV

Eππ(I=2) = 573.0(2.9) MeV

Eπ=274.6(1.4) MeV    (mπ = 143.1(2.0) MeV)

● USQCD 512-node BG/Q machine at BNL

● DOE “Mira” BG/Q machines at ANL

● STFC BG/Q “DiRAC” machines at Edinburgh, UK.

● Obtain close matching of kaon and ππ energies:



  

I=0 ππ energy

● Signal/noise deteriorates quickly 
due to vacuum contrib.

● Difficult to determine plateau start. 
Performed both 1- and 2-state fits.

● Our phase shift                                         ~2.7σ below conventional Roy equation 
determination of 

● Possibly low statistics concealing delayed plateau start? 

● Using 38° → ~3% change in A0 : much smaller than other errs. 

● For consistency we choose to use our lattice value.

2% stat err!

[G.Colangelo, private communication]



  

Matrix element fits

[Dominant contribution to Re(A0)] [Dominant contribution to Im(A0)]

Q
2 Q

6

● No statistically resolvable excited state dependence with tmin(π→Q) > 3.

● Signal quickly decays: +40% stat. error between tmin(π→Q)=4 and 5!

● Use tmin(π→Q) = 4 . 

● Estimate 5% excited state systematic by comparing ππ(I=0) amplitude 
computed using one- and two-state fits.



  

Systematic errors

● 15% ren. error due to one-loop PT truncation and low, 1.53 GeV matching 
scale. (Est. by comparing two different RI/SMOM intermediate schemes.)

● 12% Wilson coefficient error large for same reason. (Est. from difference 
between LO and NLO.)

● Errors for each separate operator matrix element:

● 12% discretization error due to coarse lattice spacing. (Est. from 
A2 calculations.)

12%

27%



  

● ~85% total error on the predicted Im(A0) due to strong cancellation between 
dominant Q4 and Q6 contributions:

(This work)

(Experiment)

Results for A0

● Good agreement for Re(A0) serves as test for method.

● Expt far more precise. Physics dominated by tree-level current-current 
diagrams hence unlikely to receive large BSM contributions. 

● Use expt. for computing ε'. 

(This work)

despite only 40% and 25% respective errors for the matrix elements.



  

Results for ε' and concluding 
remarks  



  

Results for ε'

● Re(A0) and Re(A2) from expt.
● Lattice values for Im(A0), Im(A2) and the phase shifts, 

(this work)=
(experiment)

● Find discrepancy between lattice and experiment at the 2.1σ level.



  

Conclusions and Outlook
● First direct computation of A0 with controllable errors performed.

● Measured Re(A0) in good agreement with experiment.

● 85% total error on Im(A0) despite 25% and 40% errors on dominant Q6 and Q4 
contributions resp., due to strong mutual cancellation.

● On final result, stat. error currently dominant.

● Sys. errors dominated by perturbative truncation errors on the 
renormalization and Wilson coeffs due to low, 1.53 GeV scale.

● Currently computing NPR running to higher energies in order to reduce this 
systematic.

● Total error on Re(ε'/ε) is ~3x the experimental error, and we observe a 2.1σ 
discrepancy. Strong motivation for continued study!

● Hope to achieve O(10%) errors on Re(ε'/ε) on a timescale of ~5 years.

● We hope these results with spur new efforts in the experimental community 
to reduce the current 15% error on the experimental number.

Thank you!
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